PhyzJob: Parallel Circuits NUMBER PUZZLES

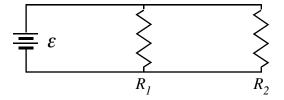
Apply Ohm's law, Joule's law, and your understanding of the nature of parallel circuits to solve the numerical problems that follow.

Ex. If $\varepsilon = 8$ V, $R_1 = 12$ Ω and $R_2 = 6.0$ Ω , what is

- a. the equivalent resistance of the circuit?
- b. the total current in the circuit?
- c. the power dissipated in R_1 ?
- d. the current through R_2 ?

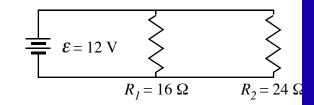
a.
$$R_{EQ} = R_1 R_2 / (R_1 + R_2)$$

 $R_{EQ} = 12 \Omega \cdot 6 \Omega / (12 \Omega + 6 \Omega)$
 $R_{EQ} = 4 \Omega$


b.
$$I_{TOT} = \varepsilon/R_{EQ}$$

 $I_{TOT} = \partial V / 4 \Omega$
 $I_{TOT} = 2 A$

- a. the equivalent resistance of the circuit?
- b. the total current in the circuit?
- c. the power dissipated in R_1 ?
- d. the current through R_2 ?


a.
$$R_{EQ} = R_1 R_2 / (R_1 + R_2)$$

 $R_{EQ} = 16 \Omega \cdot 24 \Omega / (16 \Omega + 24 \Omega)$
 $R_{EQ} = 9.6$

b.
$$I_{TOT} = E/R_{EQ}$$

 $I_{TOT} = 12 \text{ V } / 9.6 \Omega$
 $I_{TOT} = 1.3 \text{ A}$

c.
$$P_1 = \varepsilon^2 / R_1$$

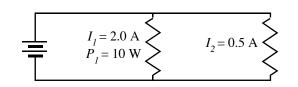
 $P_1 = (\partial V)^2 / 12 \Omega$
 $P_1 = 5.3 W$

d.
$$I_2 = E/R_2$$

 $I_2 = 8 \text{ V} / 6 \Omega$
 $I_2 = 1.3 \text{ A}$

c.
$$P_1 = \varepsilon^2 / R_1$$

 $P_1 = (12 \text{ V})^2 \cdot 16 \Omega$
 $P_1 = 9.0 \text{ W}$


d.
$$I_2 = \varepsilon/R_2$$

 $I_2 = 12 \text{ V / } 24 \Omega$
 $I_2 = 0.5 \text{ A}$

2. If $I_1 = 2.0 \text{ A}$, $P_1 = 10 \text{ W}$, and $I_2 = 0.5 \text{ A}$, what is

- a. the voltage across R_1 ?
- b. the resistance of R_2 ?
- c. the power dissipated in the circuit?
- d. the equivalent resistance of the circuit?

a.
$$V_1 = P_1/I_1$$

 $V_1 = 10 \text{ A} / 2.0 \text{ A}$
 $V_1 = 5.0 \text{ V}$

b.
$$R_2 = \varepsilon/I_2$$

 $R_2 = 5.0 \text{ V / } 0.5 \text{ A}$
 $R_2 = 10 \Omega$

c.
$$P_{TOT} = I_{TOT} \varepsilon$$

 $P_{TOT} = (2.0 \text{ A} + 0.5 \text{ A}) \cdot 5 \text{ V}$
 $P_{TOT} = 13 \text{ W}$

d.
$$R_{EQ} = \varepsilon/I_{TOT}$$

 $R_{EQ} = 5 \text{ V / (2.5 \text{ A})}$
 $R_{EQ} = 2 \Omega$

3. If $I_1 = 1.5$ A, $R_1 = 8.0$ Ω , and $R_2 = 6.0$ Ω , what is the voltage across R_2 ?

$$V_2 = V_1 = I_1 R_1$$

 $V_2 = 1.5 \text{ A} \cdot 8 \Omega$
 $V_2 = 12 \text{ V}$

4. If $\mathcal{E} = 9.0 \text{ V}$, $I_1 = 0.4 \text{ A}$, and $I_2 = 1.2 \text{ A}$, what is the power dissipated in the circuit?

$$P_{TOT} = I_{TOT} \mathcal{E}$$

$$P_{TOT} = (0.4 \text{ A} + 1.2 \text{ A}) \cdot 9 \text{ V}$$

$$P_{TOT} = 14 \text{ W}$$

- 5. If $\mathcal{E} = 32 \text{ V}$, $R_1 = 18 \Omega$, and $P_2 = 48 \text{ W}$, what is the current
- a. through R_1 ?
- b. through R_2 ?
- c. through the battery (total current in the circuit)?

a.
$$I_1$$
 = ϵ / R_1 = 32 V / 18 Ω = 1.8 A

b.
$$I_2 = P_2 / \mathcal{E} = 48 \text{ W} / 32 \text{ V} = 1.5 \text{ A}$$

$$c.\ I_{TOT} = I_1 + I_2 = 1.8A + 1.5 A = 3.3 A$$