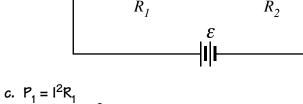
PhyzJob: Series Circuits NUMBER PUZZLES


Apply Ohm's law, Joule's law, and your understanding of the nature of series circuits to solve the numerical problems that follow.

Ex. If $\mathcal{E} = 12 \text{ V}$, $R_1 = 3.0 \Omega$ and $R_2 = 6.0 \Omega$, what is

- a. the equivalent resistance of the circuit?
- b. the total current in the circuit?
- c. the power dissipated in R_1 ?
- d. the voltage across R_2 ?

a.
$$R_{EQ}$$
 = R_1 + R_2 (for series circuit)
 R_{EQ} = 3.0 Ω + 6.0 Ω
 R_{EQ} = 9.0 Ω

b.
$$I = \varepsilon/R_{EQ}$$

 $I = 12 \text{ V } / 9.0 \Omega$
 $I = 1.3 \text{ A}$

$$P_1' = (1.3 \text{ A})^2 \cdot 3.0 \Omega$$
 $P_1 = 5.1 \text{ W}$
d. $V_2 = IR_2$

d.
$$V_2 = IR_2$$

 $V_2 = 1.3 \text{ A} \cdot 6.0 \Omega$
 $V_2 = 8.0 \text{ V}$

1. If
$$\mathcal{E} = 10 \text{ V}$$
, $R_1 = 12 \Omega$ and $R_2 = 3.0 \Omega$, what is

- a. the equivalent resistance of the circuit?
- b. the total current in the circuit?
- c. the power dissipated in R_1 ?
- d. the voltage across R_2 ?

$$R_{1} = 12 \Omega$$

$$\mathcal{E} = 10 \text{ V}$$

$$| \mathbf{I} | \mathbf{I}$$

a.
$$R_{EQ}$$
 = R_1 + R_2 (for series circuit)
 R_{EQ} = 12 Ω + 3.0 Ω
 R_{EQ} = 15 Ω

b.
$$I = E/R_{EQ}$$

 $I = 10 \text{ V} / 15 \Omega$
 $I = 0.67 \text{ A}$

c.
$$P_1 = I^2 R_1$$

 $P_1 = (0.67 \text{ A})^2 \cdot 12 \Omega$
 $P_1 = 5.4 \text{ W}$

d.
$$V_2 = IR_2$$

 $V_2 = 0.67 \text{ A} \cdot 3 \Omega$
 $V_2 = 2.0 \text{ V}$

2. If I = 2.0 A, $R_1 = 4.0 \Omega$, and $V_2 = 5.0 \text{ V}$, what is

a. the voltage across R_1 ?

b. the resistance of R_2 ?

c. the power dissipated in the circuit?

d. the voltage of the battery?

a.
$$V_1 = IR_1$$

 $V_1 = 2.0 \text{ A} \cdot 4.0 \Omega$
 $V_1 = 8.0 \text{ V}$

b.
$$R_2 = V_2/I$$

 $R_2 = 5.0 \text{ V} / 2.0 \text{ A}$
 $R_2 = 2.5 \Omega$

$$R_{I} = 4.0 \Omega$$

$$R_{2}$$

$$I = 2.0 \text{ A}$$

c.
$$P_{TOT} = I^2 R_{EQ}$$

 $P_{TOT} = (2.0 \text{ A})^2 (4 \Omega + 2.5 \Omega)$
 $P_{TOT} = 26 \text{ W}$

d.
$$\varepsilon = IR_{EQ}$$

 $\varepsilon = 2.0 \text{ A} \cdot (4 \Omega + 2.5 \Omega)$
 $\varepsilon = 13 \text{ V}$

3. If $\mathcal{E} = 24 \text{ V}$, $R_1 = 8.0 \Omega$, and $R_2 = 6.0 \Omega$, what is the current through R_2 ?

$$I = ε/R_{EQ}$$

 $I = 24 V / (8 Ω + 6 Ω)$
 $I = 1.7 A$

4. If $\mathcal{E} = 9.0 \text{ V}$, $R_1 = 5.0 \Omega$, and $R_2 = 13 \Omega$, what is the power dissipated in the circuit?

$$P_{TOT} = \varepsilon^2 / R_{EQ}$$

 $P_{TOT} = (9 \text{ V})^2 / (5 \Omega + 13 \Omega)$
 $P_{TOT} = 4.5 \text{ W}$

5. If I = 0.75 A, $R_1 = 6$ Ω , and $R_2 = 15$ Ω , what is the voltage

a. across R_1 ?

b. across R_2 ?

c. of the battery?

a.
$$V_1 = IR_1 = 0.75 \text{ A} \cdot 6 \Omega = 4.5 \text{ V}$$

b.
$$V_2 = IR_2 = 0.75 \text{ A} \cdot 15 \Omega = 11.3 \text{ V}$$

c.
$$E = V_1 + V_2 = 4.5 \text{ V} + 11.3 \text{ V} = 15.8 \text{ V}$$