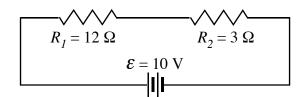
PhyzJob: Series Circuits NUMBER PUZZLES

 R_2

 R_1

Apply Ohm's law, Joule's law, and your understanding of the nature of series circuits to solve the numerical problems that follow.

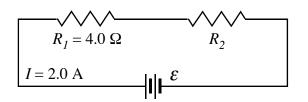

- Ex. If $\mathcal{E} = 12 \text{ V}$, $R_I = 3.0 \Omega$ and $R_2 = 6.0 \Omega$, what is a. the equivalent resistance of the circuit? b. the total current in the circuit? c. the power dissipated in R_I ? d. the voltage across R_2 ? a. $R_{EQ} = R_1 + R_2$ (for series circuit) $R_{EQ} = 3.0 \Omega + 6.0 \Omega$ $R_{EQ} = 9.0 \Omega$ P_1
- b. $I = \epsilon/R_{EQ}$ I = 12 V / 9.0 Ω I = 1.3 A

c.
$$P_1 = I^2 R_1$$

 $P_1 = (1.3 \text{ A})^2 \cdot 3.0 \Omega$
 $P_1 = 5.1 \text{ W}$

d.
$$V_2 = IR_2$$

 $V_2 = 1.3 \text{ A} \cdot 6.0 \Omega$
 $V_2 = 8.0 \text{ V}$


1. If
$$\mathcal{E} = 10$$
 V, $R_1 = 12 \Omega$ and $R_2 = 3.0 \Omega$, what is

- a. the equivalent resistance of the circuit?
- b. the total current in the circuit?
- c. the power dissipated in R_1 ?
- d. the voltage across R_2 ?

Е

- 2. If I = 2.0 A, $R_1 = 4.0 \Omega$, and $V_2 = 5.0$ V, what is
- a. the voltage across R_1 ?
- b. the resistance of R_2 ?
- c. the power dissipated in the circuit?
- d. the voltage of the battery?

3. If $\mathcal{E} = 24$ V, $R_1 = 8.0 \Omega$, and $R_2 = 6.0 \Omega$, what is the current through R_2 ?

4. If $\mathcal{E} = 9.0$ V, $R_1 = 5.0 \Omega$, and $R_2 = 13 \Omega$, what is the power dissipated in the circuit?

5. If I = 0.75 A, R₁ = 6 Ω, and R₂ = 15 Ω, what is the voltage a. across R₁?
b. across R₂?
c. of the battery?

2.a.8.0V b.2.5 Ω c.26W d.13V 3.1.7 A ~ 4.4.5W ~ 5.a.4.5V b.11.3V c.15.8V ~