Phyz Examples: Newton’s Laws

Physical Quantities • Symbols • Units • Brief Definitions

Acceleration • a • m/s2 • The rate at which a body’s velocity changes. A body undergoes acceleration if its speed and/or direction of travel changes. Values of acceleration must sometimes be found using equations of motion. Sometimes expressed as a vector a.

Gravitational Acceleration • g • m/s2 • The vertical acceleration undergone by an object in free fall. On Earth, that acceleration is 9.8 m/s2; on the moon, it’s 1.6 m/s2.

Mass • m • kg • The quantity of matter in a body; the measure of a body’s resistance to acceleration. Quantity of inertia. NOT the same thing as weight (which is gravitational force).

Force • F • N or kg·m/s2 • A measure of the push or pull involved when two bodies interact. Sometimes expressed as a vector F.

Weight • W • N or kg·m/s2 • The gravitational force between two bodies, typically an object on or near the surface of a planet and the planet itself. Most often, that planet is Earth. NOT equivalent to mass (which is a body’s quantity of matter or inertia). Weight is gravitational force.

Equations

$F = ma$ • Newton’s Second Law ($F = ma$ in vector form)

$W = mg$ • “The Weight Equation” • Notice that it’s just Newton’s Second Law written with gravitational force and gravitational acceleration.

Smooth Operations Examples

1. Given $m = 5$ kg and $a = 7$ m/s2. Find F.

 1. $m = 5$ kg $a = 7$ m/s2 $F =$

 $F = ma$

 $F = 5$ kg · 7 m/s2 $a = F/m$

 $F = 35$ N

2. Given $m = 12$ kg and $F = 3$ N. Find a.

 2. $m = 12$ kg $F = 3$ N $a =$

 $F = ma$

 $a = 3$ N / 12 kg

 $a = 0.25$ m/s2

3. A bullet undergoes a 1000-m/s2 acceleration when acted on by a 20-N force. What is the mass of the bullet?

 3. $a = 1000$ m/s2 $F = 20$ N $m =$

 $F = ma$

 $m = F/a$

 $m = 20$ N / 1000 m/s2

 $m = 0.02$ kg = 20 g

4. Given $m = 75$ kg and $g = 9.8$ m/s2. Find W.

 4. $m = 75$ kg $g = 9.8$ m/s2 $W =$

 $W = mg$

 $W = 75$ kg · 9.8 m/s2

 $W = 735$ N

5. Given $W = 152$ N and $g = 3.8$m/s2. Find m.

 5. $W = 152$ N $g = 3.8$ m/s2 $m =$

 $W = mg$

 $m = W/g$

 $m = 152$ N / 3.8 m/s2

 $m = 40$ kg

6. What is the weight of a 6-kg medicine ball?

 6. $m = 6$ kg $g = 9.8$ m/s2 $W =$

 (assume you're on Earth unless given reason to think otherwise.)

 $W = mg$

 $W = 6$ kg · 9.8 m/s2

 $W = 59$ N

7. What is the mass of a 143-N object?

 7. $W = 143$ N $g = 9.8$ m/s2 $m =$

 $W = mg$

 $m = W/g$

 $m = 143$ N / 9.8 m/s2

 $m = 14.6$ kg