PhyzExamples: Kewton's Laws

Physical Quautities•Symbols• Units•Brief Definitions

Acceleration • $a \bullet \mathrm{~m} / \mathrm{s} 2 \bullet$ The rate at which a body's velocity changes. A body undergoes acceleration if its speed and/or direction of travel changes. Values of acceleration must sometimes be found using equations of motion. Sometimes expressed as a vector a.

Gravitational Acceleration $\bullet g \bullet \mathrm{~m} / \mathrm{s} 2 \bullet$ The vertical acceleration undergone by an object in free fall. On Earth, that acceleration is $9.8 \mathrm{~m} / \mathrm{s} 2$; on the moon, it's $1.6 \mathrm{~m} / \mathrm{s} 2$.
Mass • $m \bullet \mathrm{~kg} \bullet$ The quantity of matter in a body; the measure of a body's resistance to acceleration.
Quantity of inertia. NOT the same thing as weight (which is gravitational force).
Force $\bullet F \bullet \mathrm{~N}$ or $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s} 2 \bullet$ A measure of the push or pull involved when two bodies interact. Sometimes expressed as a vector \mathbf{F}.

Weight • $W \bullet \mathrm{~N}$ or $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s} 2 \bullet$ The gravitational force between two bodies, typically an object on or near the surface of a planet and the planet itself. Most often, that planet is Earth. NOT equivalent to mass (which is a body's quantity of matter or inertia). Weight is gravitational force.

Equations

$F=m a \cdot$ Newton's Second Law ($\mathbf{F}=m \mathbf{a}$ in vector form)
$W=m g \bullet$ "The Weight Equation" • Notice that it's just Newton's Second Law written with gravitational force and gravitational acceleration.

Smooth Operations Examples

1. Given $m=5 \mathrm{~kg}$ and $a=7 \mathrm{~m} / \mathrm{s}^{2}$. Find F.
2. $\mathrm{m}=5 \mathrm{~kg} \quad a=7 \mathrm{~m} / \mathrm{s}^{2} \quad \mathrm{~F}=$?
$\mathrm{F}=\mathrm{ma}$
$\mathrm{F}=5 \mathrm{~kg} \cdot 7 \mathrm{~m} / \mathrm{s}^{2} \mathrm{a}=\mathrm{F} / \mathrm{m}$
$\mathrm{F}=35 \mathrm{~N}$
3. A bullet undergoes a $1000-\mathrm{m} / \mathrm{s}^{2}$ acceleration when acted on by a $20-\mathrm{N}$ force. What is the mass of the bullet?
4. $a=1000 \mathrm{~m} / \mathrm{s}^{2} \quad \mathrm{~F}=20 \mathrm{~N} \mathrm{~m}=$?
$\mathrm{F}=\mathrm{ma}$
$\mathrm{m}=\mathrm{F} / \mathrm{a}$
$\mathrm{m}=20 \mathrm{~N} / 1000 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{m}=0.02 \mathrm{~kg}=20 \mathrm{~g}$
5. Given $W=152 \mathrm{~N}$ and $g=3.8 \mathrm{~m} / \mathrm{s}^{2}$. Find m.
6. $\mathrm{W}=152 \mathrm{~N} \quad \mathrm{~g}=3.8 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~m}=$?
$\mathrm{W}=\mathrm{mg}$
$\mathrm{m}=\mathrm{W} / \mathrm{g}$
$\mathrm{m}=152 \mathrm{~N} / 3.8 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{m}=40 \mathrm{~kg}$
7. Given $m=12 \mathrm{~kg}$ and $F=3 \mathrm{~N}$. Find a.
8. $\mathrm{m}=12 \mathrm{~kg} \quad \mathrm{~F}=3 \mathrm{~N} \quad \mathrm{a}=$?
$\mathrm{F}=\mathrm{ma}$
$a=3 \mathrm{~N} / 12 \mathrm{~kg}$
$a=0.25 \mathrm{~m} / \mathrm{s}^{2}$
9. Given $m=75 \mathrm{~kg}$ and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. Find W.
10. $\mathrm{m}=75 \mathrm{~kg} \quad \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~W}=$?
$\mathrm{W}=\mathrm{mg}$
$W=75 \mathrm{~kg} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}$
$W=735 \mathrm{~N}$
11. What is the weight of a $6-\mathrm{kg}$ medicine ball?
12. $\mathrm{m}=6 \mathrm{~kg} \quad \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~W}=$?
(assume you're on Earth unless given reason to think otherwise.)
$W=m g$
$\mathrm{W}=6 \mathrm{~kg} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}$
$W=59 \mathrm{~N}$
13. What is the mass of a $143-\mathrm{N}$ object?
14. $\mathrm{W}=143 \mathrm{~N} \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~m}=$?
$\mathrm{W}=\mathrm{mg}$
$\mathrm{m}=\mathrm{W} / \mathrm{g}$
$\mathrm{m}=143 \mathrm{~N} / 9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{m}=14.6 \mathrm{~kg}$
