

A nail is partially driven into a block of wood. An iron ball is thrown at the nail, driving the nail some depth into the wood. Without changing any characteristics of the wood or nail, how could a thrown iron ball drive the nail deeper into the wood?

1.Factor 1

a. One way a thrown iron ball could drive the nail even deeper into the wood is if...

the ball were thrown faster.

b. So the drive depth is (__directly __inversely) proportional to...

speed

c. In symbols, $D \propto \mathbf{V}$

2.Factor 2

a. Another way a thrown iron ball could drive the nail even deeper into the wood is if...

the ball had more mass.

b. So the drive depth is (__directly __inversely) proportional to...

mass

c. In symbols, $D \propto \mathbf{m}$

3. Experimental Finding

a. Consider the following evidence.

Doubling the **ball mass** doubles the drive depth.

Doubling the <u>ball speed</u> quadruples the drive depth; tripling it increases the drive depth by a factor of nine.

b. So the drive depth is *actually* (__directly __inversely) proportional to...

SQUARE of the speed.

c.Correct the corresponding symbol proportionality above.

4.The extent to which a thrown ball can drive in a nail is called its kinetic energy. a.What determines a body's kinetic energy? Kinetic energy of a body is directly proportional to the mass of the body and the square of the speed of a body. b.Write a proportionality for kinetic energy.: $KE \propto mv^2$

5. Suppose a body with a mass *m* and a speed *v* had a kinetic energy *KE*. The questions below refer to changes in kinetic energy that result from changing the mass and/or speed of the body. To make these questions easy to answer, rewrite the expression above as an **equation** using 1's for all the variables.

$$KE \propto mv^2$$
$$1 = 1 \cdot 1^2$$

 $? = 2 \cdot 1^2 = 2 \times 2KE$

 $? = 1 \cdot 2^2 = 4KE$

What would be the kinetic energy of a body with a. a mass of 2*m* and a speed *v*?

b.a mass of *m* and a speed of 2*v*?

c.a mass of 2*m* and a speed of 2*v*?

? = 2 · 2² => 8KE

d.a mass of 2m and a speed of v/2?

 $? = 2 \cdot (1/2)^2 => KE/2$

6. Suppose a body with a mass m and a speed v had a kinetic energy KE.

a.What would be the mass of a body with a speed of v and a kinetic energy of 2KE?

b.What would be the speed of a body with a mass of *m* and a kinetic energy of 4KE?

c.What would be the speed of a body with a mass of *m* and a kinetic energy of 2KE?

$2 = 1 \cdot ?^2 => 2v$

7. The actual equation relating kinetic energy to mass and speed is $KE = 1/2 \text{ mv}^2$. The 1/2 is simply a constant of proportionality. It doesn't change any of the findings above! If the mass of a body is 1.5 kg and its speed is 8.7 m/s,

a. select the correct value for the kinetic energy of the body from the choices below,

i.9.8 J	ii.13.1 J	iii.57 J	iv.113 J
1/2 m ² v	just m ⋅ v		$m \cdot v^2$
(squared m instead of v)	(calculated momentum instead		(forgot 1/2)
	of kinetic energy)		

b. Identify the mistake made in the calculation of each incorrect choice. Describe it in the space below each incorrect choice.