PhyzExamples: Temperature and Heat

Physical Quantities • Symbols • Units • Brief Definitions

Temperature • T • kelvin: K; also °C, °F, R • A measure of the average kinetic energy in the random translational motions of the particles in a body.

Absolute temperature is measured on the Kelvin or Rankine scale.

Relative temperature is measured on the Celsius or Fahrenheit scale.

Heat $\bullet Q \bullet$ joule: J \bullet Internal energy that is transferred between bodies, typically from hotter bodies to colder bodies.

Specific Heat Capacity • c • J/kg·°C • The amount of heat needed to raise the temperature of a specific mass of a substance by a given quantity. Typically, the heat added to one kilogram of a substance to raise its temperature by one Celsius degree. Also the heat removed from one kilogram of a substance to reduce its temperature by one kilogram by one Celsius degree.

Work done by a heat engine • $W \cdot J$ • Mechanical energy released from a system such as a sample of gas when it expands. (As defined in California's Science Framework for 9-12 Physics.)

Heat added to a heat engine • Q_H • Thermal energy added to a system by contact with an external source (hotter body).

Heat removed from a heat engine • Q_C • Thermal energy removed from a system by contact with a heat sink (colder body).

Equations

 $Q = mc\Delta T \bullet heat added = specific heat capacity \cdot mass \cdot change in temperature$ $<math>W = Q_H - Q_C \bullet work done by a heat engine = heat added - heat removed$

Examples

1. What is the specific heat of a substance if 37 kJ of heat gives rise to an 8.2 °C rise in the temperature of a 23 kg sample?

1. Q = 37,000 J T = 8.2 °C m = 23 kg c=? Q = mc T c = Q/m T = 37,000 J / (23 kg)(8.2 °C)c = 196 J/kg°C

2. How much energy is given off when a 45 kg iron ingot at 800 °C is quenched in water to a final temperature of 80 °C?

2. m = 45 kg T = -720 °C c = 460 J/kg°C Q = mc T = (45 kg)(460 J/kg°C)(-720 °C) Q = -14.9x10⁶ J = 14.9 MJ given off

Examples

1. What is the specific heat of a substance if 37 kJ of heat gives rise to an 8.2 °C rise in the temperature of a 23 kg sample?

3. Q = 37,000 J T = 8.2 °C m = 23 kg c=? Q = mc T c = Q/m T = 37,000 J / (23 kg)(8.2 °C) c = 196 J/kg°C

2. How much energy is given off when a 45 kg iron ingot at 800 °C is quenched in water to a final temperature of 80 °C?

4. m = 45 kg T = $-720 \degree C$ c = 460 J/kg°C Q = mc T = (45 kg)(460 J/kg°C)($-720 \degree C$) Q = -14.9×10^6 J = 14.9 MJ given off