Make a data table, then plot the strength of the electric field $v s$. the distance from the spherical charges shown below. Hint: the field is symmetrical around the charge and the sphere itself is a conductor.

$d(\mathrm{~mm})$	$E(\mathrm{~N} / \mathrm{C})$
15	+80
30	+20
60	+5

Equation you used to find E :

$$
E=k Q / d^{2}
$$

$d(\mathrm{~mm})$	$E(N / \mathrm{c})$
15	-80
30	-20
60	-5

Suppose the graph represented a small track on which a marble could roll. If a marble were placed on the graph 30 mm away from the center of the charge and released, which way would it roll?

> Away from the charge.

How does this compare to the motion of a free proton placed 30 mm from the center of the spherical charge?

They correspond/agree.
What would an electron placed 30 mm from the spherical charge do if released?
Move toward the charge.

Suppose the graph represented a small track on which a marble could roll. If a marble were placed on the graph 30 mm away from the center of the charge and released, which way would it roll?

> Toward the charge.

How does this compare to the motion of a free proton placed 30 mm from the center of the spherical charge?

They correspond/agree.
What would an electron placed 30 mm from the spherical charge do if released?

Move away from the charge.

Make a data table, then plot the electric potential vs. the distance from the spherical charges shown below. Hint: the potential is symmetrical around the charge, and the sphere itself is a conductor.

$d(\mathrm{~mm})$	$\mathrm{V}(\mathrm{v})$
15	+120
30	+60
60	+30

Equation you used to find E :

$$
V=k Q / d
$$

$d(\mathrm{~mm})$	$\mathrm{V}(\mathrm{v})$
15	-120
30	-60
60	-30

Suppose the graph represented a small track on which a marble could roll. If a marble were placed on the graph 30 mm away from the center of the charge and released, which way would it roll?

> Toward the charge.

How does this compare to the motion of a free proton placed 30 mm from the center of the spherical charge?

They correspond/agree.
What would an electron placed 30 mm from the spherical charge do if released?

Move away from the charge.

