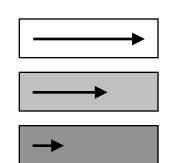
PHYZSPRINGBOARD: INDEX OF REFRACTION 1


1. Speed

When light travels through a vacuum, it propagates at 3.0×10^8 m/s.

When light travels through glass, it propagates at 2.0×10^8 m/s.

When light travels through gallium phosphide, it propagates at 0.86×10^8 m/s.

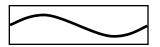
a. If the speed of light in a vacuum is c and the speed of light in a transparent material is v, write and name the ratio of the speed of light in a vacuum to the speed of light in the transparent material.

- b. Show calculations to determine the value of this ratio for i. glass.
 - ii. gallium phosphide.

2. Wavelength

When light from a laser pointer travels through a vacuum, its wavelength is 670 nm.

When light from a laser pointer travels through glass, its wavelength is 447 nm.

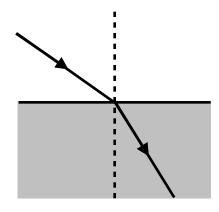

When light from a laser pointer travels through gallium phosphide, its wavelength is 191 nm.

a. What is the ratio of the wavelength of light in a vacuum to the wavelength of light

i. in glass?

ii. in gallium phosphide?

b. What is the expression and name of the ratio of the wavelength of light in a vacuum (λ_1) to the wavelength of light in a transparent material (λ_2)?



MARGINAL QUESTIONS
1. How long are the three rectangles above?
2. How many waves are contained in each rectangle?

3. The Bends

The diagram to the right shows a beam of light incident from a vacuum to glass at an oblique angle.

- a. Label the following:
 - incident ray
 - refracted ray
 - normal
 - angle of incidence (θ_1)
 - angle of refraction (θ_2)

- b. Not all of the light from the incident beam is refracted into the glass.
 - i. Which ray is missing from the diagram above?
 - ii. Add it to complete the diagram.
- c. For light passing from a vacuum to glass, what is the general relationship between the angle incidence and the angle of refraction?
 - d. If 524 nm light had been incident from a vacuum to deucenaquarterium (n = 2.25), i. how fast would the light travel in the deucenaquarterium?
 - ii. what wavelength would the light have in the deucenaquarterium?