PhyzGuide: Rotational Dynamics II

translational		ΜΟΜΕΝΤυΙ		M	rotational
Name Symbol Defn	Linear Momentum p Momentum is "quantity motion," and is defined a product of an object's m velocity:	as the	Name Symbol Defn	L (also ℓ) Angular n of rotation product of	Aomentum nomentum is "quantity n," and is defined as the f an object's rotational l angular velocity:
Eqn	p = mv		Eqn	$L = I\omega$ (al	so, $L = mvr$)
Vector	Direction of the vector p direction of the object's		Vector	2	of the vector L is the kis of rotation (via a rule).

translational

IMPULSE

rotational

Name Symbol Defn	Linear Impulse Δp Linear impulse is the change in linear momentum. It is brought about by an unbalanced external force acting on an object over an interval of time.	Name Symbol Defn	Angular Impulse ΔL Angular impulse is the change in angular momentum. It is brought about by an unbalanced external torque acting on an object over an interval of time.
Eqn	$\Delta p = F \Delta t = \Delta(mv)$	Eqn	$\Delta L = \tau \Delta t = \Delta (I\omega)$
Vector	$\Delta \mathbf{p}$ is in the direction of F .	Vector	$\Delta \mathbf{L}$ is in the direction of τ .

translational

CONSERVATION

rotational

Conservation of linear momentum

If a system is isolated for linear motion (the sum of all external forces is zero), then its linear momentum is conserved (i. e., remains unchanged after an internal interaction).

$$p = p' \implies m_1 v_1 + m_2 v_2 = m_1 v_1' + m_2 v_2'$$

Angular momentum is separate from linear momentum when considering conservation laws: **p** is conserved and **L** is conserved. Kinetic energy does not work this way, as we shall see...

Conservation of angular momentum

If a system is isolated for rotational motion (the sum of all external torques is zero), then its angular momentum is conserved (i. e., remains unchanged after an internal interaction).

$$=L' \implies I\omega = I'\omega'$$

L

Angular momentum is conserved as a spinning skater pulls in his/her arms. The skater undergoes an **increase** in angular speed while undergoing a simultaneous **decrease** in rotational inertia.

PhyzGuide: Rotational Dynamics III

translational		WORK	rotational
Name Symbol Defn	Work W Work occurs in the linear sense when a force acts to translate an object through a distance. It can increase or decrease the total energy in a particular system.	Name Symbol Defn	Work W Work occurs in the rotational sense when a torque acts to rotate an object through an angular displacement. It can increase or decrease the total energy in a particular system.
Eqn	$W = \mathbf{F} \cdot \mathbf{d} = F d \cos \phi$	Eqn	$W = \tau \Theta$

translational KINETICENERGY rotational

Name Symbol Defn	Linear kinetic energy KE_{LIN} Kinetic energy is the energy an object has due to its motion. It is brought about by work being done to accelerate the object: $W = \Delta KE$.	Name Symbol Defn	Rotational kinetic energy KE_{ROT} Kinetic energy is the energy an object has due to its motion. It is brought about by work being done to accelerate the object: $W = \Delta KE$.

Eqn $KE = 1/2mv^2$

Eqn $KE = 1/2I\omega^2$

Conservation of total kinetic energy: The total kinetic energy of a system is made up of its linear kinetic energy and its rotational kinetic energy: $KE_{TOT} = KE_{LIN} + KE_{ROT}$.

Therefore, kinetic energy within a system can be exchanged between linear **and** rotational types.

translational

POWER

rotational

Symbol	Power P Power is the <i>rate</i> at which work is done.	Name Symbol Defn	Power P Power is the <i>rate</i> at which work is done.
Eqn	P = W/t $P = F \cdot d/t$ P = Fv	Eqn	$P = W/t$ $P = \tau \cdot \theta/t$ $P = \tau \omega$