
PhyzGuide: Rotational Dynamics I

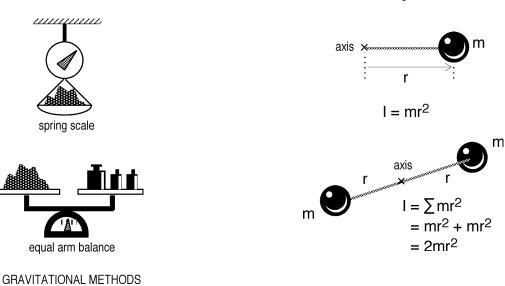
translational		FORCE	rotational
Name Symbol Units	Force F (or F vector) Defined by Newton's second law: $\Sigma F = ma (\Sigma \mathbf{F} = m\mathbf{a})$ Force is what causes linear acceleration—change in linear velocity.	Name Symbol Units	Torque τ (τ vector) Torque is the rotational version of force. It causes angular acceleration—change in angular velocity. It is defined algebraically as:
	5		$\tau = rF\sin\phi = rF \text{ when } \mathbf{r} \bot \mathbf{F}.$
		<i>r</i> ≡	The <i>distance</i> from the axis of rotation to the point through

- The assance from the axis of rotation to the point through which the force is acting.
 (Notice that a force exerted at a point far from the axis of rotation produces a greater torque than the same force exerted near the axis.) This distance is sometimes called the lever arm, or torque arm.
- F = The quantity of linear *force* acting.
- ϕ = The *angle* between the radial direction and the direction of force.

NOTE: F_T is the component of force in the TANGENTIAL direction, F_R is the component of force in the RADIAL direction.

translational

INERTIA


Name	Mass	
Symbol	m	5
Units	A measure of resistance to	
	change in linear velocity.	
	HOW TO FIND IT:	
	Gravitational Method: Weigh	
	the object and calculate mass via	
	the relation $W = mg$	

the relation W = mgInertial Method: Inertial balance NameRotational Inertia, also Moment of InertiaSymbolI (capital "i")

Units A measure of resistance to change in angular velocity.

HOW TO FIND IT:

In general, $I = \sum mr^2$. For a point mass *m*, rotating at a distance *r* from an axis, $I = mr^2$. (This distance is called the **moment arm.**) Solid objects vary—use tables giving *I* in terms of total mass *M* and radius *R* of an object.

translational **NEWTON'S LAWS** rotational

NEWTON'S FIRST LAW

Bodies maintain their state of rest or of constant speed in a straight line unless acted on by an unbalanced external force.

NEWTON'S SECOND LAW

Acceleration is proportional to net force and inversely proportional to mass: $\Sigma \mathbf{F} = m\mathbf{a}$.

NEWTON'S THIRD LAW

"For every force there is an equal and opposite reaction force." Forces always come in equal and opposite pairs.

NEWTON'S FIRST LAW

Bodies maintain their state of rest or of constant angular speed in the same plane unless acted on by an unbalanced external torque.

NEWTON'S SECOND LAW

Angular acceleration is proportional to net torque and inversely proportional to rotational inertia: $\Sigma \tau = I\alpha$.

NEWTON'S THIRD LAW

"For every torque there is an equal and opposite reaction torque." Torques always come in equal and opposite pairs.

db