
PhyzJob: Composition Classics

From Rectangular to Polar Coordinates

FELIX

 $c = (7.1m; 135^{\circ})$ $e = (14m; 30^{\circ})$ $g = (4.0m; 90^{\circ})$

Write all the displacement vectors above in rectangular form and then convert to polar form (magnitude and angle). Each square is 1.0m by 1.0m. All x- and y-components have integer values.

a = (4.0m, 7.0m) a = (8.1m; 60°)	a = $\sqrt{(a_x^2 + a_y^2)}$ a = $\sqrt{((4m)^2 + (7m)^2)}$ a = 8.1m	$\theta = Tan^{-1}(a_y/a_x)$ $\theta = Tan^{-1}(7m/4m)$ $\theta = 60^{\circ}$
b = (–10m, –1m) (10.0m; 186°)	$b = \sqrt{b_x^2 + b_y^2}$ $b = \sqrt{((-10m)^2 + (-1m)^2)}$ b = 10.0m	θ = Tan ⁻¹ (b _y /b _x) θ = Tan ⁻¹ (-1m/-10m) θ = 186°
c = (–5m, 5m) (7.1m; 135°)	$C = \sqrt{C_x^2 + C_y^2}$ $C = \sqrt{((-5m)^2 + (5m)^2)}$ C = 7.1m	θ = Tan ⁻¹ (c _y /c _x) θ = Tan ⁻¹ (5m/-5m) θ = 135°
d = (7m, -4m) (8.1m; 330°)	$d = \sqrt{d_x^2 + d_y^2}$ $d = \sqrt{((7m)^2 + (-4m)^2)}$ d = 8.1m	θ = Tan ⁻¹ (d _y /d _x) θ = Tan ⁻¹ (-4m/7m) θ = 330°
e = (12m, 7m) (14m; 30°)	$e = \sqrt{e_x^2 + e_y^2}$ $e = \sqrt{((12m)^2 + (7m)^2)}$ e = 14m	θ = Tan ⁻¹ (e _y /e _x) θ = Tan ⁻¹ (7m/12m) θ = 30°
f = (8m, 0m) (8.0m; 0°)	$f = \sqrt{f_x^2 + f_y^2}$ f = $\sqrt{((8m)^2 + (0m)^2)}$ f = 8.0m	$\theta = \text{Tan}^{-1} (f_y/f_x)$ $\theta = \text{Tan}^{-1} (\text{Om}/\text{8m})$ $\theta = \text{O}^\circ$
g = (0m, 4m) (4.0m; 90°)	$g = \sqrt{g_x^2 + g_y^2}$ $g = \sqrt{((Om)^2 + (4m)^2)}$ g = 4.0m	$\theta = Tan^{-1} (g_y/g_x)$ $\theta = Tan^{-1} (4m/Om)$ $\theta = 90^{\circ}$